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Abstract
Certain Diophantine conjectures are proven, and to do so certain remarkable
classes of orthogonal polynomials are identified, yielding additional
Diophantine findings.

PACS numbers: 02.30.Gp, 02.10.De

1. Introduction and main results

Recently certain Diophantine conjectures were proffered [1, 2] (or see appendix C of [3]).
They were arrived at via the investigation of the behaviour of certain isochronous many-body
problems in the neighbourhood of their equilibrium configurations. In this paper we prove
these conjectures, and in order to do so we identify a class of polynomials satisfying three-term
recursion relations—hence belonging to an orthogonal class—which seem of interest in their
own right, at least inasmuch as they also yield additional Diophantine findings. We moreover
show how the approach used in this paper provides an alternative proof, and an extension, of
Diophantine results proffered over one and a half century ago by Sylvester [4] and revisited
quite recently by Askey [5] and by Holtz [6].

The first of these conjectures—which coincides, up to trivial notational changes (and the
correction of a trivial misprint), with conjecture 4.1 of [1]—states that the tridiagonal N × N

matrix U(N) defined componentwise as follows,

Un,n(N) = N(N − 1) − (n − 1)2 − (N − n)2 = −2n2 + (N + 1)(2n − 1),

n = 1, . . . , N, (1a)

Un,n−1(N) = (n − 1)2, n = 2, . . . , N, (1b)
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Un,n+1(N) = (N − n)2, n = 1, . . . , N − 1, (1c)

(of course with all other elements vanishing) has the N eigenvalues n(n − 1), n = 1, . . . , N,

i.e.

det[x − U(N)] =
N∏

n=1

[x − n(n − 1)]. (2)

Note the symmetry property of this N ×N matrix U(N) under the exchange n ⇐⇒ N +1−n.
And, more importantly, also note that the argument N of this matrix U(N) plays a double role
in its definition: it denotes the order of this matrix, and moreover it appears as a parameter in
its definition.

To prove this conjecture we firstly introduce the (more general) tridiagonal M ×M matrix
V (M, ν) defined componentwise as follows:

Vm,m(M, ν) = ν(ν − 1) − (m − 1)2 − (ν − m)2 = −2m2 + (ν + 1)(2m − 1),
(3a)

m = 1, . . . , M,

Vm,m−1(M, ν) = (m − 1)2, m = 2, . . . ,M, (3b)

Vm,m+1(M, ν) = (ν − m)2, m = 1, . . . , M − 1, (3c)

(of course with all other elements vanishing), and the class of polynomials

p(ν)
n (x) = det[x − V (n, ν)]. (4)

It is easily seen that p(ν)
n (x) is a monic polynomial of degree n in the variable x and it is also a

polynomial of degree n in the (a priori arbitrary) parameter ν, and that

p
(ν)
1 (x) = x − ν + 1, p

(ν)
2 (x) = x2 − 2(2ν − 3)x + 2(ν − 1)(ν − 2). (5)

It is as well plain (see (1) and (3)) that

V (n, n) = U(n), (6)

hence the conjecture reported above, see (2), amounts to formula (see (4) and (6))

p(n)
n (x) =

n∏
m=1

[x − m(m − 1)], (7a)

which for future reference is complemented by the assignment

p
(0)
0 (x) = 1. (7b)

In the following section 2 we show that the polynomials p(ν)
n (x) satisfy (and are in fact defined

by) the three-term recursion relation

p
(ν)
n+1(x) = [x + 2n2 − 2(ν − 1)n − ν + 1]p(ν)

n (x) − n2(n − ν)2p
(ν)
n−1(x), n = 1, 2, . . .

(8a)

with the ‘initial assignments’

p
(ν)
−1(x) = 0, p

(ν)
0 (x) = 1. (8b)

This is in fact a rather trivial consequence of their definition (4) with (3)—and, as we show in
the following section, it entails for these polynomials the rather explicit representation

p(ν)
n (x) = p(n)

n (x) +
n−1∑
m=0

{(
n!

m!

)2
p(m)

m (x)

(n − m)!

n∏
�=m+1

(� − ν)

}
. (9)
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On the right-hand side of this formula the expressions p(n)
n (x) (and of course likewise p(m)

m (x))
are a priori given by (7) (see the derivation of this formula in the following section), but
clearly setting ν = n in this formula (9) this notation gets validated because the sum on the
right-hand side of this formula disappears due to the vanishing of the product appearing in it:
namely the conjecture (7a) is thereby proven.

Remark. In formula (9) the first term on the right-hand side could be absorbed in the sum
following it, by extending that sum to n rather than n − 1, with the standard assumption that
a product has unit value whenever the lower limit in the range of its index exceeds the upper
limit. An analogous observation applies to several formulae written below. We prefer the
more explicit notation employed above, and below, because we consider it is more transparent
in the context of our treatment.

Clearly this expression, (9) with (7), of the polynomial p(ν)
n (x), which is valid when n is

a positive integer and ν is an arbitrary number, entails the relation

p(j)
n (x) = p(n)

n (x) +
n−1∑
m=j

{(
n!

m!

)2
p(m)

m (x)

(n − m)!

n∏
�=m+1

(� − j)

}
, (10)

provided j is a positive integer not exceeding n, j � n (since the last product on the right-hand
side of (9) vanishes for m < j � n). Moreover, since clearly (see (7a))

p(m)
m [k(k − 1)] = 0 for k = 1, 2, . . . , m, (11)

(9) with (7) entails (provided k is a positive integer)

p(ν)
n [k(k − 1)] = p(n)

n [k(k − 1)] +
min[n−1,k−1]∑

m=0

{(
n!

m!

)2
p(m)

m [k(k − 1)]

(n − m)!

n∏
�=m+1

(� − ν)

}
(12a)

and (see (10))

p(j)
n [k(k − 1)] = p(n)

n [k(k − 1)] +
min[n−1,k−1]∑

m=j

{(
n!

m!

)2
p(m)

m [k(k − 1)]

(n − m)!

n∏
�=m+1

(� − j)

}
. (12b)

Hence (see (11), and note that the sum on the right-hand side of (12b) vanishes if its lower
limit exceeds its upper limit)

p(j)
n [k(k − 1)] = 0 if k = 1, 2, . . . , j, j = 1, 2, . . . , n. (13)

In words, the polynomial p
(j)
n (x) (of degree n in the variable x) with j any positive integer

not exceeding n (j = 1 or 2 or, . . . , or n) has the j zeros k(k − 1) with k = 1, . . . , j. This
is a remarkable Diophantine property associated with the family of orthogonal polynomials
characterized by the three-term recursion relation (8); it includes the result (7a), which is
reproduced for j = n. Note that these j zeros of the polynomial p

(j)
n (x) are independent of

its order n.
It is moreover easily seen that (10) with (7) entails

p(n−1)
n (x) = (x + n)p

(n−1)
n−1 (x) = (x + n)

n−1∏
m=1

[x − m(m − 1)], (14)

p(n−2)
n (x) = [x2 + 2(2n − 1)x + 2n(n − 1)]p(n−2)

n−2 (x)

= [x − x+(n)] [x − x−(n)]
n−2∏
m=1

[x − m(m − 1)], (15a)
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of course with

x±(n) = −2n + 1 ± [n2 + (n − 1)2]1/2. (15b)

It is thus seen that, in addition to featuring the n − 1 integer zeros k(k − 1) implied by (13),
the polynomial p(n−1)

n (x) also vanishes at x = −n,

p(n−1)
n (−n) = 0; (16)

hence also this polynomial p(n−1)
n (x), as well as the polynomial p(n)

n (x), has the remarkable
Diophantine property that all its n zeros are integer numbers (see (14)). On the other hand, as
shown by (15), for a generic (positive integer) value of n � 3 the polynomial p(n−2)

n (x) has
n − 2 integer zeros (see (13)), but its remaining 2 zeros are generally not integer numbers (see
(15b))—except when n is the second entry in the sequence A001652 [8] of twin Pythagorean
triples (we owe this last remark to Christophe Smet).

Analogous results also hold for the conjecture presented in [2]. We now describe these
findings; since the treatment is analogous to that reported above, the following presentation is
somewhat more terse.

This conjecture [2] states that the tridiagonal N ×N matrix Ũ (N) defined componentwise
as follows,

Ũn,n(N) = 2n(N + 1 − n), n = 1, . . . , N, (17a)

Ũn,n−1(N) = −n(N + 1 − n), n = 2, . . . , N, (17b)

Ũn,n+1(N) = −n(N + 1 − n), n = 1, . . . , N − 1, (17c)

(of course with all other elements vanishing) has the N eigenvalues n(n + 1), n = 1, . . . , N,

i.e.

det[x − Ũ (N)] =
N∏

n=1

[x − n(n + 1)]. (18)

As above, note the symmetry property of this N × N matrix Ũ (N) under the exchange
n ⇐⇒ N + 1 − n, as well as the double role played by the number N, which identifies the
order of this matrix and appears as a parameter in its definition.

To prove this conjecture we firstly introduce the (more general) tridiagonal M ×M matrix
Ṽ (M, ν) defined componentwise as follows:

Ṽm,m(M, ν) = 2m(ν + 1 − m), m = 1, . . . , M, (19a)

Ṽm,m−1(M, ν) = −m(ν + 1 − m), m = 2, . . . ,M, (19b)

Ṽm,m+1(M, ν) = −m(ν + 1 − m), m = 1, . . . ,M − 1, (19c)

(of course with all other elements vanishing), and the class of polynomials

p̃(ν)
n (x) = det[x − Ṽ (n, ν)]. (20)

Again, it is easily seen that p̃(ν)
n (x) is a monic polynomial of degree n in the variable x and it

is also a polynomial of degree n in the (a priori arbitrary) parameter ν, and that

p̃
(ν)
1 (x) = x − 2ν, p̃

(ν)
2 (x) = x2 − 2(3ν − 2)x + 6ν(ν − 1). (21)

It is as well plain (see (17) and (19)) that

Ṽ (n, n) = Ũ (n), (22)
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hence the conjecture reported above, see (18), amounts to formula (see (20) and (22))

p̃(n)
n (x) =

n∏
m=1

[x − m(m + 1)] , (23a)

which for future reference is complemented by the assignment

p̃
(0)
0 (x) = 1. (23b)

It is moreover plain that

p̃(n)
n (0) = (−1)nn!(n + 1)!. (23c)

In the following section 2 we show that the polynomials p̃(ν)
n (x) satisfy (and are in fact defined

by) the three-term recursion relation

p̃
(ν)
n+1(x) = [x + 2(n + 1)(n − ν)] p̃(ν)

n (x) − n(n + 1)(n − ν)(n − 1 − ν)p̃
(ν)
n−1(x),

n = 1, 2, . . . (24a)

with the ‘initial assignments’

p̃
(ν)
−1(x) = 0, p̃

(ν)
0 (x) = 1. (24b)

This is in fact a rather trivial consequence of their definition (20)—and, as we show in the
following section 2, it entails for these polynomials the rather explicit representation

p̃(ν)
n (x) = p̃(n)

n (x) +
n−1∑
m=0

{[
n!(n + 1)!

m!(m + 1)!

]
p̃(m)

m (x)

(n − m)!

n∏
�=m+1

(� − ν)

}
, (25)

where (consistently with this formula) p̃(n)
n (x) is defined by (23). The conjecture (23a) is

thereby proven.
Clearly this expression, (25) with (23), of the polynomial p̃(ν)

n (x), which is valid when n
is a positive integer and ν is an arbitrary number, entails the relation

p̃(j)
n (x) = p̃(n)

n (x) +
n−1∑
m=j

{[
n!(n + 1)!

m!(m + 1)!

]
p̃(m)

m (x)

(n − m)!

n∏
�=m+1

(� − j)

}
, (26)

provided j is a positive integer not exceeding n, j � n (since the last product on the right-hand
side of (25) vanishes for m < j � n). Moreover, since clearly (see (23a))

p̃(m)
m [k(k + 1)] = 0 for k = 1, 2, . . . , m, (27)

(25) with (23) entails (provided k is a positive integer)

p̃(ν)
n [k(k + 1)] = p̃(n)

n [k(k + 1)] +
min[n−1,k−1]∑

m=0

{[
n!(n + 1)!

m!(m + 1)!

]
p̃(m)

m [k(k + 1)]

(n − m)!

n∏
�=m+1

(� − ν)

}

(28a)

and (see (26))

p̃(j)
n [k(k + 1)] = p̃(n)

n [k(k + 1)] +
min[n−1,k−1]∑

m=j

{[
n!(n + 1)!

m!(m + 1)!

]
p̃(m)

m [k(k + 1)]

(n − m)!

n∏
�=m+1

(� − j)

}
.

(28b)

Hence (see (27), and note that the sum on the right-hand side of (28b) vanishes if its lower
limit exceeds its upper limit)

p̃(j)
n [k(k + 1)] = 0 if k = 1, 2, . . . , j, j = 1, 2, . . . , n. (29a)
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In words, the polynomial p̃
(j)
n (x) (of degree n in the variable x) with j any positive integer

not exceeding n (j = 1 or 2 or, . . . , or n) has the j zeros k(k + 1) with k = 1, . . . , j. This
is a remarkable Diophantine property associated with the family of orthogonal polynomials
characterized by the three-term recursion relation (24); it includes the result (23a), which is
reproduced for j = n. Again, let us emphasize that these j zeros of the polynomial p̃

(j)
n (x)

are independent of its degree n.

It is moreover easily seen, by inserting (23c) in (26), that

p̃(j)
n (0) = 0 for j = 0, 1, . . . , n − 1. (29b)

(We owe this remark to Christophe Smet.) It is thus seen (see also (29)) that, for
j = 0, 1, . . . , n − 1, the polynomial p̃

(j)
n (x) features j + 1 integer numbers among its n

zeros. Hence all its zeros are integers for j = n − 1 (as well as for j = n, see (23a)). Indeed
clearly (26) yields

p̃(n−1)
n (x) = xp̃

(n−1)
n−1 (x) = x

n−1∏
m=1

[x − m(m + 1)] , (30a)

as well as

p̃(n−2)
n (x) = x(x + 2n)p̃

(n−2)
n−2 (x)

= x(x + 2n)

n−2∏
m=1

[x − m(m + 1)]. (30b)

Thus we conclude that, not only the polynomial p̃(n)
n (x), but as well the polynomials p̃(n−1)

n (x)

and p̃(n−2)
n (x), have the remarkable Diophantine property that all their n zeros are integer

numbers, see (23a), (30a) and (30b). It is moreover easily seen from (26) that

p̃(n−3)
n (x) = x

[
x − x̃(n)

+

][
x − x̃

(n)
−

] n−3∏
m=1

[x − m(m + 1)], (30c)

with

x̃
(n)
± = 1 − 3n ± (1 + 3n2)1/2. (30d)

Hence p̃(n−3)
n (x) also features only integer zeros if 1 + 3n2 is the square of an integer, namely

for n = 4, 15, 56, 209 . . . (sequence A001353 [8]: we owe this remark to Christophe Smet).
Note that the recursion relations (8a) respectively (24a) entail that the polynomials p(ν)

n (x)

respectively p̃(ν)
n (x) are orthogonal (‘Favard theorem’: see [7], and, for instance, p 159

of [9]).
It would of course be sufficient at this stage to simply verify that the polynomials given

by formulae (9) respectively (25) satisfy the recursion relations (8) respectively (24); but it
seems more appropriate to prove these formulae—in the following section 2—via a route that
makes clear how they were obtained.

The fact that the three-term recursion relation (8) respectively (24) can be solved
explicitly, see (9) respectively (25), and that the two classes of orthogonal polynomials p(ν)

n (x)

respectively p̃(ν)
n (x) defined by them feature the Diophantine properties (13) (see also (30),

and the remark at the end of the paragraph including this equation) respectively (29a) (see
also (30)) seems remarkable.

The diligent reader will verify that these polynomials, as given by (9) respectively (25),
can be identified with generalized hypergeometric functions [9] as follows:

p(ν)
n (x) = n!(1 − ν)n 3F2 (−n,m+(x),m−(x) ; 1, 1 − ν; 1), (31a)
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m±(x) = 1 ± (1 + 4x)1/2

2
, (31b)

or equivalently

p(ν)
n [x(x + 1)] = n!(1 − ν)n 3F2(−n, x + 1,−x; 1, 1 − ν; 1), (31c)

respectively

p̃(ν)
n (x) = (n + 1)!(1 − ν)n 3F2(−n, m̃+(x), m̃−(x); 2, 1 − ν; 1), (32a)

m̃±(x) = 3 ± (1 + 4x)1/2

2
= 1 + m±(x), (32b)

or equivalently

p̃(ν)
n [x(x − 1)] = (n + 1)!(1 − ν)n 3F2(−n, 1 + x, 2 − x; 2, 1 − ν; 1). (32c)

Here and below the hypergeometric function is of course defined in the standard manner [9]:

nFm [a1, . . . , an; c1, . . . , cm; z] =
∞∑

�=0

(a1)� · · · (an)�z
�

(c1)� · · · (cm)��!
, (33a)

with the symbol (a)� defined as follows,

(a)� = �(a + �)

�(a)
, (34)

where � denotes the standard gamma function [9].
Hence, when the parameter ν is a positive integer larger than n, ν = N + 1, N � n,

our polynomials p(ν)
n (x) respectively p̃(ν)

n (x) can be related to the ‘Dual Hahn polynomials’
Rn(x; γ, δ,N) (see for instance [10]) via the formulae

p(N+1)
n (x) = n!(−N)nRn(x; 0, 0, N) (35)

respectively

p̃(N+1)
n (x) = (n + 1)!(−N)nRn(x − 2; 1, 1, N). (36)

Note that instead our Diophantine results (see (10) and (26) and the formulae following these
two equations) refer to the case when n and N are indeed non-negative integers but N + 1 � n;
and that in these cases these formulae must be interpreted with appropriate care.

Finally we apply our approach to a problem treated quite recently by Richard Askey [5]
and Olga Holtz [6]. They revisited an old result by Sylvester [4] and provided a proof of the
following determinantal formula:

det[x − S(N)] =
N∏

n=1

[x − (2m − 1 − N)], (37)

where S denotes the tridiagonal N × N matrix defined componentwise as follows:

Sn,n−1(N) = N + 1 − n, n = 2, . . . , N, (38a)

Sn,n+1(N) = n, n = 1, . . . , N − 1, (38b)

with all other elements vanishing. Once again, note the symmetry property of this N × N

matrix S(N) under the exchange n ⇐⇒ N + 1 − n, as well as the double role played by
the number N, which identifies the order of this matrix and appears as a parameter in its
definition.
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Proceeding in close analogy with the preceding treatment (but somewhat more tersely),
we now introduce the tridiagonal M ×M matrix T (M, ν) defined componentwise as follows:

Tm,m−1(M, ν) = ν + 1 − m, m = 2, . . . , M, (39a)

Tm,m+1(M, ν) = m, m = 1, . . . ,M − 1, (39b)

of course with all other elements vanishing, and ν an a priori arbitrary parameter. We then
define the class of polynomials

s(ν)
n (x) = det[x − T (n, ν)], n = 1, 2, . . . . (40)

Clearly s(ν)
n (x) is a monic polynomial of degree n in the variable x and it is also a polynomial

in the parameter ν of degree n
2 if n is even, n−1

2 if n is odd, and

s
(ν)
1 (x) = x, s

(ν)
2 (x) = x2 + 1 − ν. (41)

It is as well plain (see (38) and (39)) that

T (n, n) = S(n), (42)

hence the determinantal identity (37) amounts to the formula

s(n)
n (x) =

n∏
m=1

[x − (2m − n − 1)] . (43)

In the following section 2 we show that the polynomials s(ν)
n (x) satisfy (and are in fact

defined by) the three-term recursion relation

s
(ν)
n+1(x) = xs(ν)

n (x) + n(n − ν)s
(ν)
n−1(x), n = 1, 2, . . . (44a)

with the ‘initial assignment’

s
(ν)
0 (x) = 1, (44b)

which is clearly sufficient to define uniquely the entire sequence of polynomials s(ν)
n (x) with

n = 1, 2, . . . . Note that this recursion relation entails the parity property

s(ν)
n (−x) = (−1)ns(ν)

n (x). (45)

The recursion relation (44) is a rather trivial consequence of the definition (40) of
the polynomials s(ν)

n (x)—and, as we show in the following section 2, it entails for these
polynomials the rather explicit representation

s(ν)
n (x) = ŝ(ν)

n (x) +
n−1∑
m=0

{
n!

m!

ŝ(ν)
m (x)

(n − m)!

n∏
�=m+1

(� − ν)

}
(46a)

where by definition

ŝ
(ν)
0 (x) = 1, ŝ(ν)

n (x) =
n∏

m=1

[x − (2m − ν − 1)] , n = 1, 2, . . . . (46b)

Clearly by setting ν = n in this formula one finds that

s(n)
n (x) = ŝ(n)

n (x), (47)

because for ν = n the sum on the right-hand side of (46a) disappears due to the vanishing of
the product appearing in it, and via (46b) the determinantal formula (43) is thereby proven,
reproducing the Sylvester’s finding [4] recently proven by Askey [5] and Holtz [6].
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Moreover this expression, (46), of the polynomial s(ν)
n (x), which is valid when n is a

positive integer and ν is an arbitrary number, entails the relation

s(j)
n (x) = ŝ(j)

n (x) +
n−1∑
m=j

[
n!

m!

ŝ
(j)
m (x)

(n − m)!

n∏
�=m+1

(� − j)

]
, (48)

provided j is a positive integer not exceeding n, j � n (since the last product on the right-hand
side of (46a) vanishes for m < j � n). Since clearly (see (46b))

ŝ(j)
m [2k − j − 1] = 0 for k = 1, 2, . . . , m, (49)

(46) moreover entails (provided k is a positive integer)

s(j)
n (2k − j − 1) = ŝ(j)

n (2k − j − 1) +
min[n−1,k−1]∑

m=j

{
n!

m!

ŝ
(j)
m (2k − j − 1)

(n − m)!

n∏
�=m+1

(� − j)

}
.

(50)

Hence (because the sum on the right-hand side of this formula vanishes if its lower limit
exceeds its upper limit; and taking note of (49))

s(j)
n (2k − j − 1) = 0 if k = 1, 2, . . . , j, j = 1, 2, . . . , n. (51)

In words, the polynomial s
(j)
n (x) (of degree n in the variable x) with j any positive integer

not exceeding n (j = 1 or 2 or. . . or n) has the j zeros 2k − j − 1 with k = 1, . . . , j. This
is a remarkable Diophantine property associated with the family of orthogonal polynomials
characterized by the three-term recursion relation (44); it includes the result (43), which is
reproduced for j = n, when this Diophantine property identifies all the zeros of the monic
polynomial s(n)

n (x), yielding its explicit form (43). Once more let us emphasize that these j

zeros of the polynomial s
(j)
n (x) are independent of its degree n.

Moreover (48) with (46b) entails

s(n−1)
n (x) = x

n−1∏
m=1

[x − (2m − n)] , (52)

s(n−2)
n (x) = (x2 + n − 1)ŝ

(n−2)
n−2 (x)

= [x − x̂+(n)][x − x̂−(n)]
n−2∏
m=1

[x − (2m − n + 1)], (53a)

of course with

x̂±(n) = ±(1 − n)1/2. (53b)

It is thus seen that, in addition to featuring the n − 1 integer zeros 2k − n implied by (51), the
polynomial s(n−1)

n (x) also vanishes at x = 0,

s(n−1)
n (0) = 0; (54)

hence also this polynomial s(n−1)
n (x), as well as the polynomial s(n)

n (x), has the remarkable
Diophantine property that all its n zeros are integer numbers (see (52)). On the other hand,
as shown by (53), for a generic (positive integer) value of n � 3 the polynomial s(n−2)

n (x) has
n−2 integer zeros (see (51)), but its remaining two zeros are not integer numbers, indeed they
are not even real, see (53b).
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Clearly the property (51) entails the factorization

s(j)
n (x) = σ

(j)

n−j (x)

j∏
k=1

(x − 2k + j + 1), j = 1, . . . , n, (55)

with σ
(j)

n−j (x) a monic polynomial of degree n− j. We owe to Christophe Smet the remark that

this polynomial has parity n − j, σ
(j)

n−j (−x) = (−1)n−j σ
(j)

n−j (x), hence it vanishes at x = 0 if
n − j is odd: so that the property (54) is actually a special case of the more general finding

s(n−j)
n (0) = 0, j = 1, 3, 5, . . . , n − 1 or n. (56)

On the other hand the parity property (45) clearly implies that s(ν)
n (x) vanishes at x = 0 if n is

odd,

s
(ν)
2j−1(0) = 0, j = 1, 2, 3, . . . . (57)

Finally, the diligent reader will verify that these polynomials, as given by (46), can be
identified with the standard hypergeometric function [9] as follows:

s(ν)
n (x) = (1 − ν)n 2F1

(
−n,−x + ν − 1

2
; 1 − ν; 2

)
. (58)

Additional remark. Christophe Smet pointed out—on the basis of numerical evidences—that

p(2n+1)
n (x) =

n∏
m=1

[x − 2m(2m − 1)] , (59)

so that also these polynomials p(2n+1)
n (x) only feature integer zeros; and that an analogous

straightforward factorization can be given for p̃(2n+1)
n (x) and s(2n+1)

n (x), entailing that these
polynomials share the remarkable Diophantine property to feature only integer zeros. We plan
to revisit these findings in our next paper on these topics [11].

2. Proofs

In this section we prove the results reported in the previous section.
Let us consider firstly the findings connected with the first conjecture [1]. As stated

above, the fact that the polynomials defined by (4) with (3) satisfy the recursion relation
(8) is an easy consequence of the determinantal definition (4) with (3): to verify it compute
det[x − V (n + 1, ν)] by multiplying the (only two nonvanishing) elements of the last line (or
equivalently of the last column) of this determinant by their adjoint determinants, obtaining
thereby the recursion (8a), and then check if need be that, for n = 0 and n = 1, (8) yields (5).

It is then convenient to renormalize the polynomials p(ν)
n (x) via the definition

p(ν)
n (x) = (n!)2q(ν)

n (x), (60)

entailing that the polynomials q(ν)
n (x) satisfy the three-term recursion relation

(n + 1)2q
(ν)
n+1(x) = [x + 2n2 − 2(ν − 1)n − (ν − 1)]q(ν)

n (x) − (ν − n)2q
(ν)
n−1(x),

n = 1, 2, . . . , (61a)

q
(ν)
−1 (x) = 0, q

(ν)
0 (x) = 1, q

(ν)
1 (x) = x − ν + 1. (61b)

The purpose of this step is to obtain a recursion relation, see (61a), in which the index n only
enters quadratically (rather than quartically, see (8a)).
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Next, we introduce the generating function

Q(x, ν; z) =
∞∑

n=0

(z + 1)−nq(ν)
n (x). (62)

It is then rather easy to verify that the recursion relation (61) entails that this generating
function satisfies the second-order ODE

(z + 1)2z2Q′′ + (z + 2 − 2ν)(z + 1)zQ′ + [(ν − 1 − x)z + ν(ν − 1) − x]Q = 0, (63)

where (just above, and always below) the appended primes denote differentiations with respect
to z. It is also plain that, at large values of |z|, via (61b) we get from (62)

Q(x, ν; z) = 1 +
x − ν + 1

z
+ O

(
1

|z|2
)

. (64)

To solve the ODE (63) and thereby identify the generating function Q(x, ν; z), it is
convenient to set

Q(x, ν; z) = (z + 1)1−ν zν−1F(x, ν; z), (65)

entailing that F(x, ν; z) satisfies the ODE

(z + 1)z2F ′′ + z2F ′ − xF = 0. (66)

It is then plain that, by setting

F(x, ν; z) =
∞∑

n=0

Cn(x, ν)z−n, (67)

one gets for the quantities Cn(x, ν) the recursion relation

Cn(x, ν) = x − n(n − 1)

n2
Cn−1(x, ν) (68a)

entailing

Cn(x, ν) = p(n)
n (x)

(n!)2
C0(x, ν). (68b)

Here and hereafter p(n)
n (x) is defined by (7).

Hence we conclude that a solution of (66) is provided by the formula

F(x, ν; z) = C0(x, ν)

∞∑
n=0

p(n)
n (x)

(n!)2
z−n, (69)

with C0(x, ν) an arbitrary function of its two arguments. Via (65) this yields for the generating
function Q(x, ν; z) the expression

Q(x, ν; z) = C0(x, ν)

(
1 +

1

z

)1−ν ∞∑
n=0

p(n)
n (x)

(n!)2
z−n, (70)

entailing at large z (via (7))

Q(x, ν; z) = C0(x, ν)

(
1 +

x + 1 − ν

z

)
+ O

(
1

|z|2
)

. (71)

Comparing with (64) we therefore conclude that C0(x, ν) = 1, yielding for Q(x, ν; z) the
final expression

Q(x, ν; z) =
(

1 +
1

z

)1−ν ∞∑
n=0

p(n)
n (x)

(n!)2
z−n. (72)
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It is on the other hand clear that (62) entails the following integral expression for the
polynomials q(ν)

n (x):

q(ν)
n (x) = (2π i)−1

∮
dz(z + 1)n−1Q(x, ν; z), (73)

with the integral
∮

(see just above and always below) being performed, in the complex
z-plane, counterclockwise on a contour enclosing the point z = −1 (and not the point z = 0).
Hence, via (72),

q(ν)
n (x) =

∞∑
m=0

p(m)
m (x)

(m!)2
(2π i)−1

∮
dz zν−1−m(z + 1)n−ν . (74)

We now use the formula

(2π i)−1
∮

dz zν−1−m(z + 1)n−ν =
∏n

�=m+1(� − ν)

(n − m)!
, (75)

which is easily proven by expanding zν−1−m in inverse powers of (z + 1),

zν−1−m = (z + 1)ν−1−m

(
1 − 1

z + 1

)ν−1−m

= (z + 1)ν−1−m

∞∑
j=0

(−1)j
(

ν − 1 − m

j

)
(z + 1)−j . (76)

We thereby obtain the following expression of the polynomials q(ν)
n (x):

q(ν)
n (x) = p(n)

n (x)

(n!)2
+

n−1∑
m=0

(
1

m!

)2
p(m)

m (x)

(n − m)!

n∏
�=m+1

(� − ν). (77)

Via (60) this yields (9).
Let us now proceed and prove the findings related to the second conjecture [2]; since the

treatment is analogous to that given above, our presentation is more terse.
The fact that the polynomials defined by (20) with (19) satisfy the recursion relation (24)

is an easy consequence of the determinantal definition (20) with (19).
We now renormalize the polynomials p̃(ν)

n (x) via the definition

p̃(ν)
n (x) = n!(n + 1)!q̃(ν)

n (x), (78)

entailing that the polynomials q̃(ν)
n (x) satisfy the three-term recursion relation

(n + 1)(n + 2)q̃
(ν)
n+1(x) = [x + 2(n + 1)(n − ν)] q̃(ν)

n (x) − (n − ν)(n − 1 − ν)q̃
(ν)
n−1(x),

n = 1, 2, . . . , (79a)

q̃
(ν)
−1 (x) = 0, q̃

(ν)
0 (x) = 1, q̃

(ν)
1 (x) = x

2
− ν. (79b)

Next, we introduce the generating function

Q̃(x, ν; z) =
∞∑

n=0

(z + 1)−nq̃(ν)
n (x). (80)

It is then rather easy to verify that the recursion relation (79) entails that this generating
function satisfies the second-order ODE

(z + 1)2z2Q̃′′ − 2ν(z + 1)zQ̃′ + [(2ν − x)(z + 1) + ν(ν − 1)] Q̃ = 0. (81)
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It is also plain that, at large values of |z| , via (79b) we get from (80),

Q̃(x, ν; z) = 1 +
x − 2ν

2z
+ O

(
1

|z|2
)

. (82)

We now set

Q̃(x, ν; z) = (z + 1)1−ν zν−1F̃ (x, ν; z), (83)

getting thereby

(z + 1)z2F̃ ′′ − 2zF̃ ′ + (2 − x)F̃ = 0. (84)

Hence by setting

F̃ (x, ν; z) =
∞∑

n=0

C̃n(x, ν)z−n, (85)

we get the recursion relation

C̃n(x, ν) = x − n(n + 1)

n(n + 1)
C̃n−1(x, ν) (86a)

entailing

C̃n(x, ν) = p̃(n)
n (x)

n!(n + 1)!
C̃0(x, ν). (86b)

Here and hereafter p̃(n)
n (x) is defined by (23).

Hence we conclude that a solution of (84) is provided by the formula

F̃ (x, ν; z) = C̃0(x, ν)

∞∑
n=0

p̃(n)
n (x)

n!(n + 1)!
z−n, (87)

with C̃0(x, ν) an arbitrary function of its two arguments. Via (83) this yields for the generating
function the expression

Q̃(x, ν; z) = C̃0(x, ν)

(
1 +

1

z

)1−ν ∞∑
n=0

p̃(n)
n (x)

n!(n + 1)!
z−n, (88)

entailing at large z (via (23))

Q̃(x, ν; z) = C̃0(x, ν)

(
1 +

x − 2ν

2z

)
+ O

(
1

|z|2
)

. (89)

Comparing with (82) we therefore conclude that C̃0(x, ν) = 1, yielding for Q̃(x, ν; z) the
final expression

Q̃(x, ν; z) =
(

1 +
1

z

)1−ν ∞∑
n=0

p̃(n)
n (x)

n!(n + 1)!
z−n. (90)

But (80) entails

q̃(ν)
n (x) = (2π i)−1

∮
dz(z + 1)n−1Q̃(x, ν; z). (91)

Hence, via the same route as above, we obtain the following expression of the polynomials
q̃(ν)

n (x):

q̃(ν)
n (x) = p̃(n)

n (x)

n!(n + 1)!
+

n−1∑
m=0

{[
1

m!(m + 1)!

]
p̃(m)

m (x)

(n − m)!

n∏
�=m+1

(� − ν)

}
. (92)

Via (78) this yields (25).
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Finally let us indicate, now quite tersely, how to obtain formula (46) from the three-term
recursion relation (44), that follows rather obviously from the definition (40) with (39).

First of all it is convenient to perform the renormalization

s(ν)
n (x) = n!w(ν)

n (x), (93)

yielding from (44) the three-term recursion relation

(n + 1)w
(ν)
n+1(x) = xw(ν)

n (x) + (n − ν)w
(ν)
n−1(x), (94a)

with the ‘initial assignments’

w
(ν)
−1(x) = 0, w

(ν)
0 (x) = 1. (94b)

It is then easily seen that the corresponding generating function,

W(x, ν; z) =
∞∑

n=0

(z + 1)−nw(ν)
n (x), (95)

satisfies the following first-order ODE:

z(z + 1)(z + 2)W ′ = − [x(z + 1) + 1 − ν] W, (96)

whose solution reads as follows:

W(x, ν; z) = W(x, ν)

(
1 +

1

z

)1−ν ∞∑
n=0

ŝ(ν)
n (x)

n!zn
, (97)

with the polynomial ŝ(ν)
n (x) defined by (46b). But (95) entails

w(ν)
n (x) =

∮
dz

2π i
(z + 1)n−1W(x, ν; z), (98)

yielding

w(ν)
n (x) = W(x, ν)

n!

{
ŝ(ν)
n (x) +

n−1∑
m=0

[(
n!

m!

)
ŝ(ν)
m (x)

(n − m)!

n∏
�=m+1

(� − ν)

]}
. (99)

Via the second of the ‘initial data’ (94b), together with (46b), one immediately sees that the
a priori arbitrary quantity W(x, ν) must be assigned the value unity, W(x, ν) = 1, and then
from (93) one obtains (46a).

3. Outlook

Some of the results reported in this paper can be arrived at more directly by focussing on
polynomials such as those considered above but having (appropriate) integer assignments
for the parameter ν; and in this manner Diophantine findings analogous to those reported
above can also be obtained for additional classes of orthogonal polynomials. Indeed it can
be shown that the orthogonal polynomials p(ν)

n (x), p̃(ν)
n (x) and s(ν)

n (x) discussed in this paper
are included in a multi-parameter class of orthogonal polynomials which includes as well, for
appropriate values of the parameters, several ‘named’ polynomials (Laguerre, Jacobi, Dual
Hahn, Krawtchouk, Meixner, . . . ), for which Diophantine results analogous to those reported
above also hold. These findings will be reported in a separate paper [11].

Finally let us mention that Christophe Smet pointed out that the search for integer zeros of
orthogonal polynomials is connected to the existence of perfect codes, and that in this context
the results in [12] might point towards further applications of our results—a suggestion worth
pursuing in future publications.
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